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Cellular Automata Model for the Diffusion Equation 
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We consider a new cellular automata rule for a synchronous random walk on 
a two-dimensional square lattice, subject to an exclusion principle. It is found 
that the macroscopic behavior of our model obeys the telegraphists's equation. 
with an adjustable diffusion constant. By construction, the dynamics of our 
model is exactly described by a linear discrete Boltzmann equation which is 
solved analytically for some boundary conditions. Consequently, the connection 
between the microscopic and the macroscopic descriptions is obtained exactly 
and the continuous limit studied rigorously. The typical system size for which 
a true diffusive behavior is observed may be deduced as a function of the 
parameters entering into the rule. It is shown that a suitable choice of these 
parameters allows us to consider quite small systems. In particular, our cellular 
automata model can simulate the Laplace equation to a precision of the order 
(2/L) 6, where L is the size of the system and .~ the lattice spacing. Implementa- 
tion of this algorithm on special-purpose machines leads to the fastest way to 
simulate diffusion on a lattice. 

KEY WORDS: Cellular automata; lattice gas; diffusion equation; 
Telegraphist's equation. 

1. I N T R O D U C T I O N  

Dif fus ive  p h e n o m e n a  p l a y  a n  i m p o r t a n t  ro le  in  m a n y  a r ea s  of  phys ics ,  

c h e m i s t r y ,  a n d  b i o l o g y  a n d  c o n s t i t u t e  a n  ac t ive  f ield of  r e sea rch .  

R e c e n t l y ,  ce l lu l a r  a u t o m a t a  ( C A )  h a v e  p r o v e d  to  be  a n  eff ic ient  t o o l  

to  s t u d y  s y s t e m s  of  m a n y  i n t e r a c t i n g  pa r t i c les .  I n  a d d i t i o n  to  t h e i r  well-  

k n o w n  a p p l i c a t i o n s  to  f lu id  m e c h a n i c s  (see, e.g., ref. 1), t hey  h a v e  b e e n  
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used to study diffusion fronts (2~ and simple models of chemical reactions/31 
and reaction-diffusion processes. (4) Also, the CA approach has been applied 
to the very realistic problem of carbonation in concrete. (5) 

Clearly, there are still many applications involving diffusion where CA 
could provide useful models and efficient numerical simulations. In par- 
ticular, reaction-diffusion processes are responsible for several interesting 
phenomena of pattern formation (6-8~ that are very difficult to analyze 
theoretically and numerically because they are described by a set of non- 
linear partial differential equations. Another example is the problem of 
diffusion in inhomogeneous media, or the trapping problem where the 
randomly walking particles may disappear when reaching particular sites of 
the system. This kind of model can be applied to several physical situa- 
tions (9) and has recently been investigated within a cellular automata 
approach. (lO) 

In view of such applications, it is important to have a reliable CA 
model of diffusion. It is not enough to have a rule which simulates 
qualitatively a diffusive behavior. One also needs a good quantitative 
agreement with real experiments. In particular, the artifacts of the model 
such as the discrete space and time should be irrelevant in the simulation. 

CA approaches to diffusion have already been proposed by several 
authors. In ref. 11 a deterministic system of particles interacting via some 
particular collision rules is discussed. Assuming molecular chaos, one- 
dimensional diffusion is found to emerge from the rule. Unfortunately, 
numerical simulations of the model invalidate this hypothesis of molecular 
chaos and the macroscopic behavior does not follow the predicted diffusion 
equation. 

Another approach that has been considered in the literature (12'2'4'5) 
consists of using a random CA. The idea is to produce synchronous 
random walks on a lattice, taking into account the exclusion principle (no 
more than one particle per site) often imposed on CA models. Although a 
qualitative diffusive behavior is observed, it is not clear in which limit these 
models really obey Fick's law of diffusion 

~?tP = DV2p (1.1) 

It turns out that a more careful analysis shows that these kinds of 
CA algorithms indeed introduce corrections to (1.1) that may affect the 
expected diffusive behavior for nonequilibrium situations, or for short times 
and small systems, (5'13) 

In this paper, we discuss a CA model of diffusion which is in the same 
spirit as the ones proposed in refs. 2, 4, and 12, but is more general. The 
discrete dynamics is solved analytically. The limit when the lattice spacing 
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and the time step go to zero is calculated and compared with the actual 
behavior of a finite automaton. 

We show that for an appropriate choice of the parameters of the rule, 
our CA model gives a very good approximation to the stationary diffusion 
equation (1.1), even for small size systems. We also discuss the time- 
dependent regime for a system with periodic boundary conditions. We 
compare the time evolution of the Fourier components of the density as 
predicted by the cellular automata dynamics with both Fick's law and the 
telegraphist equation. It is found that the parameters entering the rule play 
an important role, in particular, for the isotropy of the dynamics. 

In addition to providing indications on how to choose the appropriate 
length and time scales in a numerical simulations, our results are 
interesting from a theoretical point of view: an important task of CA 
modeling is to derivee the macroscopic behavior of a system starting from 
its microscopic dynamics (the CA rule). The usual way is to assume 
molecular chaos, to replace the finite-difference equations by a truncated 
Taylor expansion, and to solved the so-obtained Boltzmann equation by 
an iterative method (typically, the Chapman-Enskog method). In general, 
none of the above steps are rigorous or well controlled. On the other hand, 
in our model, the link between the microscopic and the macroscopic levels 
can be achieved explicitly because exact solutions of the discrete dynamics 
are found. 

From a numerical point of view, our algorithm is appropriate for an 
implementation on a massively parallel computer. On special-purpose 
machines such as CAM-6 or CAM-8 (14~ simulations of particles diffusing 
on a lattice can be run at a speed that cannot be attained with other 
computers. 

This paper is organized as follows. In Section 2, the model is defined 
for a two-dimensional square lattice. For  the sake of clarity, the macro- 
scopic behavior of the automaton is first derived by a Taylor expansion of 
the discrete dynamics, up to second order in space and time. The continuity 
equation is obtained. As a consequence of the discreteness of the lattice, it 
is found that the particle current is not related to the velocity field and the 
density by the usual relation J = pu. The differential equation governing 
the CA dynamics differs from Fick's law by two terms: a contribution due 
to the momentum tensor and a second-order time derivative of the density. 
This second correction accounts for a finite speed of information propaga- 
tion (ls~ and leads to a telegraphist-like equation. ~16) The Green-Kubo 
relation for the diffusion constant and the extension of the rule to a three- 
dimensional space are briefly discussed at the end of Section 2. 

Section 3 is devoted to a more complete analysis of the discrete 
Boltzmann equation and the results are then used in Section 4 in order to 
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find explicit solutions for some specific boundary conditions. Comparison 
of the CA dynamics with Fick's law and the telegraphist equation are 
considered. 

In Section 5, we compare the performances of this algorithm with 
another one recently proposed. Finally, conclusions are drawn in Section 6. 

2. T H E  M O D E L  

2.1. The CA Rule 

Our model consists of particles moving along the main directions of a 
hypercubic lattice (a square lattice in 2D or a cubic lattice in 3D). At each 
time step, the directions of the lattice are rotated by an angle c~ i chosen at 
random, with probability pi, independently for each site of the lattice. The 
effect of this mechanism is to produce a synchronous random walk. 

In order to be more specific, we shall now define our CA rule for the 
two-dimensional case. This corresponds to the situation studied numeri- 
cally on a special purpose computer, the CAM-6. (12) The one- and three- 
dimensional extensions will be briefly discussed at the end of this section. 

We consider a square lattice with particles moving horizontally and 
vertically. In one time step z, they travel a distance 2, which is the lattice 
spacing. The random motion is then achieved by introducing random 
deviations in the trajectories of the particles. For reasons of implementa- 
tion on a special-purpose computer, it is convenient to restrict the 
dynamics to a maximum of one particle per direction at each site (exclu- 
sion principle). To ensure this constraint during the evolution, the devia- 
tions are produced by rotating all the particles entering a site by the same 
angle. For  a square lattice, the possible rotations are 0, re/2, re, and 3~/2. 
For  instance, if the site r is rotated by an angle ~/2, a particle entering that 
site from the left will come out upward and, at the next time step, will enter 
the site north of r. These rotations are performed independently for each 
site, with probabilities P0, Pl,  P2, and P3, respectively (see Fig. 1). 

In this model, we choose to make these rotations uniform and data- 
blind, i.e., they are produced by an external mechanism which is the same 
for all sites and which is not affected by the number of particles entering 
the sites. This mechanism is not suitable for simulating nonlinear or 
inhomogeneous diffusion (D function of the density or of the position). 
However, if the Pi vary slowly enough so that their spatial derivative can 
be neglected, inhomogeneous situations can also be considered. 

We introduce the occupation numbers n~(r) defined as the number of 
particles entering the site r at time t with a velocity pointing in direction 
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P0 Pl P2 P3 

Fig. 1. How the entering particles are deflected at a typical site as a result of the rule. The 
four possible outcomes occur with respective probabilities Po, Pl,  P2, and P3. The figure shows 
four particles, but clearly, any one of the arrows can be removed when fewer entering particles 
are present. 

e i (see Fig. 2). As a consequence of the exclusion principle, ni can be either 
zero or one. 

The CA rule governing the dynamics of our model reads 

n i ( r + e i ,  t+r)=qoni(r, t)+qln~+l(r, t)+q2ni+2(r, t)+q3ni+3(r, t) (2.l) 

where i is defined modulo 4. The q~ are Boolean variables that are also 

_ i C 3 

Fig. 2. The four directions of the lattice. 
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function of r and t, and which select only one of the four terms of the right- 
hand side of (2.1). More precisely, we define 

(1 ;0 ;0 ;0 )  

" ( 0 ; 1 ; 0 ; 0 )  
(qo;ql;q2;q3) (0;0; 1;0) 

(0; 0; 0; 1) 

with probability Po 

with probability p l 

with probability P2 

with probability P3 

where 

P o + P l  + P2 + P3 = 1 (2.2) 

In practice (i.e., in the implementation on a dedicated CA computer such 
as CAM-6), the values of qi can be produced in the following way: on the 
same lattice one runs another systems of particles that evolve according to 
some appropriate deterministic collision rules. For instance, a H P P  gas (17) 
would be appropriate on a square lattice. The reason the H P P  gas can be 
used as a random generator is that an ergodic behavior is expected in such 
a model. Thus, each possible configuration of the gas at a given site is sup- 
posed to appear with a probability depending only on the total number of 
particles. As explained in more detail in ref. 2, this fact can be used to select 
one of the above rotations necessary to produce the random walk. 
However, numerical experiments have shown that this mechanism is not 
perfect: the short-time correlations slightly renormalize the diffusion coef- 
ficient D if one does not let the random generator gas evolve several time 
steps before using it. But, as long as one is not interested in producing a 
given value of D, this effect does not seem important. 

Equation (2.1) can be averaged over all possible realizations of the 
system. By defining N~(r, t ) =  (ni(r,  t ) ) ,  and remembering that the random 
generator is independent of the occupation numbers ni, we obtain 

Ni(r +ei, t + v) 

= poNi(r, t)+plN~+l(r, t)+p2Ni+2(r, t)+p3Ni+3(r, t) (2.3) 

Equation (2.3) can be considered as the discrete Boltzmann equation 
associated with our system. It describes the evolution of the averaged 
occupation numbers Ni which range in the interval [0; 1]. This equation 
has two important features that are usually not present in most many- 
particles systems: our Boltzmann equation is exact (no truncation of a 
hierarchy is necessary) and linear. This makes the analytical study of our 
system quite interesting because the hard to control molecular chaos 
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hypothesis is true by construction of the dynamics. Linear Boltzmann 
equations are important in physics because explicit solutions can be 
obtained and compared with the approximation schemes generally used. 
An equation very similar to ours has been considered by Hauge. (18) The 
main difference is that in our case, space and time are discrete, which adds 
new features to the dynamics. Also, when the Pi are not all equal to 1/4, the 
solution proposed in ref. 18 cannot be adapted to our Boltzmann equation. 

For isotropy reason, it is now natural to assume that the probability 
for a particle to be deflected by 90 deg left or right is the same. Thus, 
henceforth, we shall impose 

Pl = P3=- P (2.4) 

which implies 

p o + 2 p + p 2 =  1 (2.5) 

2.2. The Balance and the  Te legraphis t 's  Equat ions 

We shall now derive the differential equation governing the evolution 
of the macroscopic quantity p, which is the density of particles. In this sec- 
tion, we are mainly interested in a simple derivation of the physical proper- 
ties of our model. Thus, we shall assume that the Boltzmann equation (2.3) 
is still correct in the continuous limit, provided we replace the finite dif- 
ferences by a truncated Taylor expansion. This expansion will be con- 
sidered up to second order in 2 and ~. The validity of such a procedure will 
be studied in the next sections. 

According to the usual relations of statistical mechanics, we define 

4 

p(r, t )=  ~ Ni(r, t) (2.6) 
i - - I  

The velocity field u(r, t) is then 
4 

p(r, t) u(r, t) = ~ Ni(r, t) vi (2.7) 
i = l  

where 
2 

vi = - ci (2.8) 
27 

We also introduce the momentum tensor H~v, which is defined using the 
Dirac notation 

4 

H =  ~ Ni Iv,>(vil (2.9) 
i = 1  
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Our dynamics has the property of conserving the number of particles. 
Therefore, one expects a continuity equation to hold in our problem. 
Summed over i, Eq. (2.3) can be written as 

4 

p ( r , t ) - p ( r , t - z ) +  2 ~ J i ( r , t ) = 0  (2.10) 
i = i  

where (~/2)J~ is the net number of particles that have traveled between 
time t -  z and time t on the lattice link connecting r + ic~. In agreement 
with the interpretation of the N~, it reads 

J/(r, t) = _2 [N~ (r + 2e~, t) - Ni + 2(r, t) ] (2.11 ) 
17 

The factor of 2/z has been added to give J~ the same units as pu. Equation 
(2.10) has the form of a discrete continuity equation: when summed over 
the r in a rectangular patch of sites, all the J;(r) cancel except for the ones 
at the boundaries. It means that the variation of the number of particles in 
the considered region is given by the sum on its boundary of the quantity 
(z/2) J~, where i is such that e~ points outside the region. 

It is important to notice that Ji is not equal to c~'pu, as is the case 
in a continuous space. Indeed, from (2.11) we have 

2 
Ji = - [N~(r) - N~+ 2(r)] + _2 I-N,(r + ici) - N~(r)] 

T T 

2 
= ei" pu + - [N:(r + 2e~) - N~(r)] (2.12) 

"C 

This difference between the particle flux and the velocity field in lattice 
gases usually appears as a correction to the transport coefficient due to the 
discretness of space. (19) 

In the continuous limit, a Taylor expansion of (2.11) gives 

22 )3 1 Ji = e~" pu + --~ grad Ni + ~ grad(div ciN~) + ( f l ( ~ 4 )  

and Eq. (2.10) takes the usual form of a continuity equation 

where J is 

p(r, t ) -  p(r, t - z ) + v  div J = 0  

(2.13) 

(2.14) 

T 
J(r, t) = pu(r, t) + ~ VH(r, t) + 0(2 3) (2.15) 
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Equation (2.14) expresses particle number conservation. Momentum is not 
conserved in our model, unless P0 = 1. The dissipation rate of momentum 
is obtained by writing (2.3) in the form of a balance equation for pu. After 
multiplication by vi and summation over i, Eq. (2.3) reads 

pu(r, t + 27) - pu(r, t) + 27V(H(r, t + 27) + (9(23)) 

- (1 +P2-Po) pu(r, t) (2.16) 

A nonvanishing right-hand side in Eq. (2.16) is the reason for the non- 
conservation Of momentum. 

Relations (2.14) and (2.16) are not sufficient to give an equation for 
the density. Another useful relation is obtained by rewriting (2.3) for 
r = r -  )oei and summing over i. After a Taylor expansion up to second 
order in 2, one gets 

3 4 

p ( r , t + 2 7 ) = p ( r , t ) - 2  ~ ~ (ci_t .V)(p,Ue(r  , t ) )  
l = 0  i = 1  

) 2  3 4 

+-~ ~ ~ (ei_,.V)2(p,Ng(r,t))+(9(2 3) (2.17) 
l = 0  i = 1  

Using that e~= -e~_2, Pl = P3 =P ,  and 

( e i  V) 2 '}- (ei+l- V) 2 = V 2 (2.18) 

Eq. (2.17) becomes 

p(r, t + 27) - p(r, t) =/~2 V2(pq) _ 27 divl-(po - P2) pu]  

27 2 

+ ~ O v [ ( p o + P 2 - 2 p ) I I ,  v] (2.19) 

where the right-hand side is taken at position r and time t. Here, # and v 
label the space coordinates x and y. Summation over repeated space indices 
is assumed. 

The term div pu can be eliminated using Eqs. (2.14) and (2.15). After 
a Taylor expansion of the finite time differences, we obtain 

O,p + 27 1 -- P2 + Po O~p 

2 1 +P2-Po 

22 P V2p + 272 Po- P O~3vHu~ (2.20) 
27 1 + p 2 - P o  1 + p 2 - P o  

Some comments are now in order. By choosing Po = P, we obtain a closed 
equation for p and the right-hand side of (2.20) has exactly the form expec- 

822/64/3-4-25 
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ted for a diffusion equation. On the other hand, (2.20) is a second-order 
differential equation in time. This is not the case for Fick's law [Eq. (1.1)]. 
In fact, our equation rather looks like the telegraphist equation, ~16) in 
agreement with the results first obtained by Taylor for a model of a 
random walk with inertia/z~ 

When poS0 ,  the term containing the momentum tensor can be 
expressed as a function of the density only using the "local equilibrium" 
ansatz 

1I" 
P + ~ ~ e i .pu (2.21) N i = 

The momentum tensor then reduces to the scalar pressure and 

177 avn.v \7/ v2p 

Equation (2.20) then takes the form of a standard telegraphist equation 

D 
a,p +75 632p =DV2p (2.22) 

where the diffusion constant D is 

22 P+Po 22 P+Po 
D - (2.23) 

1- 4 ( p + p 2 )  1- 4 [ 1 - ( p + p o ) ]  

and the speed of sound c is 

C - -  
Z 1 
1- x /~  (2.24) 

Equation (2.22) describes the behavior of our model in some appropriate 
limit. In principle, one expects contributions of all spatial and temporal 
derivatives. The presence of a second-order time derivative is conceptually 
important because information cannot travel faster than the particles them- 
selves. This property emerges in our model because its dynamics is based 
on a microscopic picture of diffusion and noncausal effects cannot arise 
with a CA rule. In this respect, the telegraphist equation is more realistic 
than Fick's law of diffusion, although, in practice, the difference only shows 
up for large values of D. 

Relation (2.23) shows that the diffusion coefficient D is adjustable by 
choosing the Pi- This fact is important when modeling a system containing 
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two or more species evolving on the same lattice with their own value of 
D. This situation appears in reaction-diffusion processes, where the various 
reagents may diffuse unequally. 

2.3. The Three-Dimensiona l  Case 

In a three-dimensional space, our CA model of diffusion can be easily 
extended if the "rotations" that take place at each node of the lattice are 
properly chosen. On a cubic lattice, we have six possible directions of 
motion which can be mixed in several different ways, in order to produce 
random walk. Among the set of all the possibilities, one of them gives 
equations very close to the two-dimensional case. For  this reason, we shall 
not repeat the details of the calculation. We shall simply describe how to 
produce the random walk and write down the corresponding telegraphist 
equation. 

Let us first label the three main directions of the lattice by et, e2, and 
e3, with the property that c 3 = e  lxe2 .  The three other directions are 
defined according to the relation 

e i=  -e i+3 ,  i modulo 6 (2.25) 

Now, we consider six operations R~, k = 0 ..... 5, that occur with probability 
Pi. The result of the operation Rk is to deflect the particle entering in the 
direction ei into the direction ei+k. The discrete Boltzmann equation then 
reads 

5 

N i ( r + e  i , t + r ) =  ~ p~Ni+k(r , t )  (2.26) 
k = 0  

Isotropy requires that we choose 

P l  = P 2  = P 4  = P 5  = P (2.27) 

As before, a contribution from the momentum tensor appears in the 
equation for the density, unless one imposes 

Po = P (2.28) 

Otherwise, using the local equilibrium approximation 

N i -  p (2.29) 
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Eq. (2.26) leads to a telegraphist's equation for the average density p, with 
an adjustable coefficient of diffusion D. With 

we obtain 

Po + 4p + P 3  = 1 (2.30) 

22 1 + P 0 -  P3 22 Po + 2p 
D - - (2.31) 

r 6 ( 1 - p o + P 3 )  z 6 [ 1 - ( p 0 + 2 p )  ] 

and a speed of sound 
2 1 

c - (2.32) 

Finally, for completeness, we briefly mention the one-dimensional 
case, which turns out to be quite simple because the momentum tensor is 
always proportional to the density. On a one-dimensional lattice, there are 
only two possible rotations and the dynamics is the following: the particles 
are either deflected by 180 deg with probability Pl, or continue in straight 
line with probability P0 = 1 - pl.  Following the same procedure as before, 
one shows that the speed of sound is c = 2/~ and the diffusion constant 
D = (22/~)[po/2(1 -- P0)], 0 < Po < 1. 

2.4. The Mean Square Displacement and the 
Green-Kubo Formula 

In Section 2.2, we obtained the value of the diffusion coefficient D by 
considering the dynamics of a system of particles performing a synchronous 
random walk, with an exclusion principle. The same coefficient D [as 
found in (2.23)] can also be obtained by considering only one particle and 
calculating its mean square displacement 

a2(t) = (x2(t) + y2( t ) )  

where 
t - - 1  

( x ( t ) , y ( t ) ) = z  ~ v(n) 
n=0 

and v(n) is one of the four possible velocities u .-~-~ (2/'1~)C i that a given 
particle has after n time steps. Since the probability of having a particle 
at a given site obeys the telegraphist equation (2.22), it is easy to show 
the following indentity, provided the probability and its gradient vanish on 
the boundaries: 

1 a2(t) 
= " (2.33) D ~-~,lim t 
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where d is the dimension of the space. The expression for ~r 2 can be easily 
calculated in our model. According to the CA rule, each particle performs 
a random walk, with probability Po of going straight, P2 of bouncing back, 
and p of being deflected by 90 deg right or left. Thus, it is found that the 
mean square displacement is 

~ 2 ( t ) = t + 2 ( t _ l )  Po- -P2  
1 +P2- -Po  

x [ ( p o -  p2) t - l -  1] 

+ 2 (1 _po___p? ~2 
+ P2 - Po /  

(2.34) 

provided the lattice is infinite or the time short enough so that the particle 
has not reached the limit of the system. This relation leads to a value of D 
in perfect agreement with Eq. (2.23). 

It is well known (18) that Eq. (2.33) is equivalent to a Green-Kubo 
relation. In our case, however, a correction due to the discreteness of the 
lattice is present/21) After some algebra, (2.33) reads 

D = ~  <v(O) .v(n)>-~  <v(O)-v(O)) 
n = O  

(2.35) 

The last term in (2.35) has the same origin as the difference between the 
particle flux J and pu which we mentioned in Section 2.2. 

Equation (2.33) provides a possible way of measuring the diffusion 
coefficient in a numerical simulation of our CA rule. When using a com- 
puter such as CAM-6, the statistics can be made very good by measuring 
{y2(t)> for many particles starting all on the line y = 0  and moving 
simultaneously. The value of D so obtained can be compared with the 
theoretical relation (2.23), thus providing a test of the random generator 
used for the simulation. For instance, when an HPP gas is used as a 
random generator, it is found that Eq. (2.33) is well satisfied, as long 
as the HPP dynamics is kept several times faster than the dynamics of the 
random walk (for instance, one reads the probabilities only once in every 
ten steps). Otherwise, we have observed some deviations between Eq. (2.23) 
and the measurement of D using relation (2.33). 

3. T H E  D I S C R E T E  D Y N A M I C S  

Our aim is now to find an explicit solution of the discrete Boltzmann 
equation (2.3) for any value of the Pi, and to compare it with the solution 
of the continuous diffusion equation. Exact solutions of the discrete 
dynamics are of great interest because they allow us to obtain rigorously 
the macroscopic behavior of the automaton without having recourse to the 
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usual expansions (multiscale or Chapman-Enskog) whose convergence is 
difficult to check. This gives an estimation of the size of the system required 
for the continuum limit to be a good approximation and determines the 
time and length scales that provide a fair modeling of a diffusion process. 

3 .1 .  T h e  D i s c r e t e  B o l t z m a n n  E q u a t i o n  

Equation (2.3) can be written in the following matrix form: 

TN(r, t+ ~)= AN(r, t) (3.1) 

where N is the column vector composed of the N i, A is the four-by-four 
matrix 

i) A =  Po P (3.2) 

P2 P Po/  

and T is the matrix operator 

T =  

o 0 o t 
t2 0 

I~ ~ 0 0 t 4 

(3.3) 

The translation operator t~ acting on any function f ( r )  is defined as 

tiff(r) - - f ( r  + ci) 

Since ei = -e i+2 ,  the inverse of T is simply T~ 1 =(~O.ti+2. 
The matrix A can be diagonalized with the linear transformation 

1 1 - 1  
P = ~  - 1  - 1  - 

- 1  1 

p 1= 1 1 --1 -- 

1 - -1  - 1  

- 1  1 - 1  

and 

(3.4) 
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One finds 

(io o p- lAp = Po--P2 0 
0 Po-P2 
0 0 1 - 4 p  

In terms of the new quantities Me related to Ne by 

N = PM and M = P -  IN 

Eq. (3.1) can be rewritten as 

(3.5) 

(3.6) 

/ Ml( t -r )  \ 
[(Po-P2) Mr(t-z)  I 

p -1TPM(  t ) = ~ (Po - P2) M3( t - z ) / 

\ ( 1 - 4 p )  M 4 ( t - r )  / 

(3.7) 

Since all the M e are taken at the same r, the spatial dependence has been 
omitted in (3.7). 

After some algebra, our problem reduces to two equations containing 
only M1 and M4, 

z~5,M1 +D@ r2t52M1 
c ,  

= D,(t51 + 62 + 63 + 64) M1 -{ 
Po--P 

4(p + Pz) 
( - -61 "~- t~ 2 -- 63 -I- 64) M4 

(3.8) 

(3.11) 

a4z~tM 4 + b4"c2~2M 4 + 8p(p + P2) M4 

= Po+P2 (--61-1-~2-~3-1-~4) M I - [ - ~  (~1-t- 62-1- 63 q'- 64) M4 

(3.9) 
where cq, and j2 are the discrete time derivatives defined as 

1 
~5,Me-= 2zz [Me(r' t + r) - Mi(r, t - r)]  (3.10) 

1 
~2tMi==- ~ [Mi(r,  t +  r ) -  2Me(r, t)+ Mi(r, t - z ) ]  "r- 

and the operator 6i is given by 

6i = t i -  1 (3.12) 
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The dimensionless diffusion constant D ,  and speed of sound c,  are defined 
in agreement with Section 2 and read 

Po+P and c 2 = ~  (3.13) 
D*=4[1- (p+ po)] 

and the coefficients a 4 and b4 are 

a4= 1 - ( p o - P 2 ) ( 1 - 4 p )  and b4=p+po-2p(po-P2) 

Similarly, it is found that m 2 and M3 are related to M1 and M 4 by 

(3.14) 

and 

1 .c 2/~2M2 M2 + a2 zest M2 + 

(1) 
1 D, + ~ (81 -~- 82 - -  83  - -  84) M1 
2 

+ Po--P (81 _ 8 2 _  83 _[_ 84) M 4 (3.15) 
8(po + P)(P2 + P) 

1 2 2 
M3 + a3"c~tM3 +-~'c c~ tM 3 

1(1) 
= - ~ D ,  + ~ (81 -- 82 --  83 -H 84) M 1 

_]_ PO - -  P ( 81  + ~2 -- 83 --  84) M 4  (3.16) 
8(po + P)(P2 + P) 

where 
1 + (Po - P2) 2 

a2 = a3 - 4(po + P)(P2 + P) 
(3.17) 

The relation between M and the density p and the velocity field u is 
easily obtained from the definitions (2.6) and (2.7). Equation (3.6) gives 

p = 2M1 

2 
el" p u  = -  ( M 2  + M 3 )  

T 
(3.18) 

e2 ~ p u  : - (M2 - M 3 )  

2 M 4  = -N1 - N3 + N2 + N4 
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It should be noted that for Po = P, we obtain a closed equation for 
p = 2M1. Equation (3.8) simply reads 

+ ~ j2p = /~72p  (3.19) 

where ~ 72 is the discrete Laplacian operator defined as 

12 ~72 ~. ~ (61 + 62 _]_ 63 ~_ 64 ) (3 .20)  

which tends to the true Laplacian V 2 in the limit 2-* 0. Relation (3.19) is 
a discrete form of the telegraphist equation. Similarly, when Po= P, the 
other Mi are only coupled to M1. 

3.2. The  S t a t i o n a r y  S t a t e  

For a stationary state (cg,= c52 = 0), it also possible to find a closed 
equation for p = 2M1 by substituting M4 from (3.9) into (3.8). By iterating 
this process, Eq. (3.8) can be rewritten as 

A 1 / 1  -1- -~ A 2 /I 1 A 2 M I = O  (3 .21)  
n 0 

where A1 and A 2 a r e  the following operators: 

A 1 ~-- (61 -t- 62 -1- 63 -t- 64) , 

and 

Z[ 2 ---- ( - -  61 -~- 62 - -  63 -[- 64) (3 .22)  

Equation (3.21) allows us to consider the corrections to Laplace equation 
due to higher order space derivatives. With 

and 

01 nl - 63 2 2 224 4 = 2  C~x+~-., ~x+ (9(,~ 6) 

, 2 2 4  "~4 
+ + 

Po - P (3.23) c~ = - -  and fl = 16p(p + P2) 
Po + P P + Po 
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Eq. (3.21) reads 

-2 4 Ox y --0 (3.24) 

Thus, to order (2/L) 2, the density obeys the Laplace equation. 
When Po= P, or when M4 can be neglected in comparison to M1 

(which is the case in first approximation), it is easy to calculate pu in a 
stationary state. Equations (3.15) and (3.16) give 

M 2 = -  ~ D , + ~  (~1+c]2--~3--~4)  M 1 (3.25) 

1 ( 1 )  
M 3 = -  ~ D , + ~  ( 5 ~ - b 2 - a 3 + a 4 )  M, (3.26) 

and, with (3.18), we have 

pu = - D ,  q- ~ --c e l  2 ((~1 -- (~3) q- e2 2 ((52 -- (~4) P 

Up to first order in 2, a Taylor expansion of the above equation leads to 
the relation 

p u = - - ( D  + ~ )  grad p (3.27) 

Thus, we do not have the usual relation pu = - D  grad p. As explained in 
Section 2, the reason is that here the particle current J is not equal to pu, 
due to the discreteness of the lattice. 

4. S O M E  EXACT RESULTS OF THE DISCRETE B O L T Z M A N N  
EQUATION 

In this section we are going to solve our discrete equations (3.8) and 
(3.9) for a few boundary conditions and address the question of how the 
continuous limit converges toward the solution of the diffusion equation or 
the telegraphist equation. We shall see that the choice of the Pi is of impor- 
tance and that significant deviations may appear in finite systems. 

4.1. Density Profile for Dif fusion between 
Parallel Source and Sink 

Here we consider a system whose boundary conditions consist of two 
parallel lines of sites having a different evolution rule: the first line (the 
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source) is such that all the sites continually produce a particle in each direc- 
tion, while on the other line (the sink), all entering particles are absorbed. 
Furthermore, we also assume that the sink and the source are parallel to 
the lattice direction el and that the system is infinite or periodic in that 
direction. Finally, we take the x axis collinear with the el direction and 
choose the y coordinates of the sink and the source to be, respectively, 
y = - 2  and y = L + 2. Therefore, our boundary conditions in-/ply 

N2(y= O) = 0  and N 4 ( y = L ) =  1 (4.1) 

These relations reflect the fact that no particle is entering the system near 
the source, whereas the source continually injects particles into it. By 
symmetry, the Ni vary only along the direction e 2 and consequently, 

51 = 53 = 0 (4.2) 

Let us now focus our attention on a stationary situation. With (4.2) and 
~t ~ ~2 #t = 0, Eqs. (3.8) and (3.9) together yield 

M4 = 0  (4.3) 

Then, (3.8) reduces to 

(52 -[- 54) M1 = 0 (4.4) 

whose solution is simply 

M 1 = ay -k- b (4.5) 

In turn, Eqs. (3.15) and (3.16) give 

1(1) ( 1 )  
M 2 = - - M 3 = - ~  D , + ~  (62-64) M ~ = -  D , + ~  a2 (4.6) 

From Eqs. (3.6) and (3.4), one has 

1 1 
N2 = ~ (M1 + 2M2) and N4 = ~ ( M  1 - -  2M2) (4.7) 

and thus 

2 ( 1 )  
a = L + 4 2 ( D , + � 8 8  and b = 2 2  D , + ~  a (4.8) 
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The density p = 2M1 is then 

4y + 8x(D, + �88 
p =  

L + 42(D, + �88 

and (pU)y = 2(2/z) M2 reads 

(4.9) 

- - -  D , + ~  ayp (4.10) (pu)y = 

These results show that the stationary density profile is linear for any value 
of the Pi and also when 2 is not small compare to L. In the continuous limit 
(i.e., for 2--* 0), (4.9) reduces to 

4y 
p = - -  (4.11) 

L 

Equations (4.7) allow us to calculate the number of particles leaving the 
system after each time step. According to Eq. (2.11), this number is 

Nz(y + 2) - Ng(y) = -D,ZOyp (4.12) 

This equation provides an efficient way to measure the diffusion coefficient 
in a numerical experiment by counting the average number of particles 
absorbed on the sink at each time step of the automaton. 

The flux along the y axis is then 

2 
Jy = - [N2(y + 2) - N4(y)] = -D~?yp (4.13) 

Thus, the usual relation between the flux and the gradient of the density 
holds. The diffusion coefficient D = (22/~) D ,  contains no correction due to 
the lattice, as opposed to Eq. (4.10). 

The linearity of the density profile has been checked with numer- 
ical simulations of the model on the special-purpose computer CAM-6. 
A perfect agreement is obtained. 

In addition, the effect of the second-order time derivative (D,/c 2) ~ in 
(3.8) clearly shows up for a time-dependent numerical simulation (i.e., 
before the steady state is reached). Indeed, for a large value of D ,  the 
ballistic motion of the particles plays an important role. In Fig. 3, we check 
the nonstationary density profile versus the one predicted by the usual 
diffusion equation. When the value of D ,  was set to D ,  =0.74 (i.e., 
x ~ ,  > r the numerical simulation shows the expected deviation due to 
the "telegraphist's term." 
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1 1 

- . 7 4  

K 

0 : -  0 
0 y/y(t) 

D,=0.41 

y/~(t) 

Fig. 3. Numerical simulations of the CA rule for a nonstationary situation. Particles emerge 
from a source at y = 0. The system is periodic in the x direction and can be assumed infinite 
in the y direction. The plots show the results of measurements of p(y, t) as a function of 
y/y(t), where 37(0 is the center of mass of the diffusing particles. For a process obeying Fick's 
law, p(y, t) = erfc(y/f(t)), which is represented by the solid lines. The circles correspond to the 
measurements performed on the automaton with a value of D,  = 0.74 in the left plot and 
D,  = 0.41 in the right one. Significant deviations appear when D,  is large enough, as a result 
of the second-order time derivative in the telegraphist equation (ballistic motion). 

4.2. The  S e m i - I n f i n i t e  S t r ip  

F o r  m o r e  c o m p l e x  b o u n d a r y  c o n d i t i o n s  t h a n  the  ones  cons ide red  in 

the  p r e v i o u s  example ,  the s t a t i o n a r y  so lu t i on  of  (3.8) and  (3.9) m a y  be 

qu i te  di f ferent  f r o m  the  so lu t i on  of  

V2p = 0 (4.14) 

if the  sys tem is n o t  la rge  e n o u g h  a n d  the  Pi  n o t  well  chosen.  

T h e  g e o m e t r y  we are  n o w  go ing  to cons ide r  has  the  shape  of  a well  

w h o s e  ver t ica l  wal ls  a re  of  infini te  he igh t  a n d  a b s o r b  part ic les ,  whi le  the  

b o t t o m  l ine o f  the  sys tem acts as a source  of  part icles .  M o r e  precisely,  we 

shall  i m p o s e  the  f o l l o w i n g  b o u n d a r y  cond i t i ons :  

p ( x  = O, y )  = p ( x  = L ,  y )  = O, 

p ( x ,  y = 0)  = ~b = cte 

for  y >~ 0 (4.15) 

for  0 < x < L  (4.16) 

a n d  

l im p = 0 (4.17) 
y ~ o o  
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The solution of (4.14) is known to be ~22) 

~ ! ( ~ _ ~ ) ( r e x )  2(~ (sin(~x/L)) 
4~b exp - sin ~ -  g \sinh(rcy/L)] - -  = - -  tan 1 (4.18) 

P = 7 ~  n d 

In order to solve (3.8) and (3.9) for the same boundary conditions, we first 
assume that r and r are respectively parallel to the x and y axes. 

Next, we consider a solution of the following form for the Mi: 

Ml,4 = ~  A 1,4(n) exp(z, y) sin(conx) (4.19) 
n 

where 

con = ~n/L (4.20) 

and z, has to be determined from (3.8) and (3.9), which, for a stationary 
state, can be rewritten as 

(31+32+33+64)M,+~(-31+32-63+34)M4=O (4.21) 

and 

(-3,-.}-32-33+34)M,--}-~(31+32-t-33.-[-34)M4=[3M4 (4.22) 

where c~ and fl are given by (3.23). Now, it should be noted that the func- 
tions exp(z, y) and sin(co,x) are eigenfunctions of the discrete operators 

31-'1-33 and 32-t-34: 

(6, + 33) sin(co~x) = bo, sin(co.x) (4.23) 

(62 + 64) exp(z, y) = bz exp(z, y) (4.24) 

and 

where 

and 

(31 + 33) exp(z, y) = (32 + 34) sin(conx) = 0 

, =2icos(7 ), j 

(4.25) 

(4.26) 

bz - exp(zn 2) + e x p ( - z , 2 )  - 2 (4.27) 
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After substitution of (4.19) into (4.21) and (4.22), we obtain 

(b~o+bz) Al +C((-b~o+bz)A4=O 

( -b~o + bz) A1 + [c((b~ + bz) - fl] A4 = 0 
(4.28) 

In order to have A1, 4 5 & 0, we must choose bz such that 

b z -  
bo~ 

4(e/fl) bo, - 1 
(4.29) 

Using (4.27), this result gives 

b z 1 2 
exp(z.2) = 1 + ~-_  + ~  (bz + 4 b J / 2  (4.30) 

The important parameter of the problem is the ratio 

c~ P o -  P 
16p(p + p2) 

(4.31) 

Clearly, e/fl can be made arbitrary large by choosing p small enough. On 
the other hand, its smallest value is 

- - z  - - - -  

obtained for p = 1/2 and P0 = P~ = 0. 
From (4.26), b~ lies in the interval [ - 4 ,  0]. Thus, according to 

(4.29), b= is always positive if c( / f l>-1/16.  On the other hand, for 
-1/8 ~< e/ f l~  -1/16, bz is negative and less than - 4  if bo~<fl/4~. There- 
fore, the square root in (4.30) is always real. In order to fulfill the boundary 
condition (4.17), one must have lexp(zn2)] <1.  This is achieved by 
choosing the minus sign in front of the square root in (4.30) when bz >~ 0, 
and the plus sign otherwise. 

It is then straightforward to calculate the density p--2M1 from (4.19) 
because, for y = 0, our expansion is identical to (4.18). Therefore 

P = - -  X - [exp(zn "~)]Y/'~ sin (4.32) 
/'C n d F /  

Although the density is only defined on the lattice sites, Eq. (4.32) provides 
an interpolation of p between the sites. In addition, it is very appropriate 
for a comparison with the continuous situation. As an example, we have 
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calculated the density for a system of size L = 292, with ~b = 4. The solution 
(4.18) of the Laplace equation at x = 132 and y = 122 is 

p = 1.3404065 (4.33) 

while Eq. (4.32) predicts p = 1.3387 if ~/fl= - 1 / 8 ,  p = 1.3412 if ~/fl=O, 
p = 1.4255 if ~/fl = 4, and p = 1.7688 if ~/fl = 23.5. 

The agreement with the solution (4.18) becomes better and better as 
the size of the system is increased. Since 

exp(z,  y)  = { [exp(z,.~)]L/~} y/L 

the convergence of the discrete solution toward the continuous result can 

be checked by compar ing  

e x p ( - n n )  with [exp(z,2)] L/;v 

This is shown in Fig. 4 for various values of 2/L and a/ft. One sees that the 
significant deviations that occur if the system is small become rapidly 

6 

d 

O 

! 

(b) L=I00k 

~ /  -~=4.0 1 J p 

~ =-0.125 

-~= 1.0 
P 

(a) L=202  
1 n 6 

Fig. 4. Comparison between the solution of the Laplace equation and the solution of the CA 
dynamics for various values of a/fl and for two system sizes (a) L = 202 and (b) L = 1002, The 
dashed line corresponds to what should be obtained for a perfect agreement. This line turns 
out to coincide very well with ~/fl= - 1 / 2 4  ~ -0.0417. 
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negligible as the lattice spacing 2 decreases. Figure 4 also suggests that 
there exists a value of ~/fl for which the solution of the discrete dynamics 
is very close to (4.18) (represented with the dashed line). 

This value of ~/fl that gives the best approximation to the solution of 
Laplace equation can be obtained from Eq. (3.24). Assuming that 
V2M1 ~ 0, one has 

2 2 4 20 xO yM1 ~ -(~3x + 04) Ms 

and, up to (9()~6), (3.21) becomes 

~2(O2x-~-~2)mlq-2~4(~-~) (~4-~4) (4.34) 

From this relation, it appears that the best choice is to take 

P o = - 2-4 ~ -0.0417 (4.35) 

With this value of e//~, the solution of the discrete problem will 
approximate the continuous solution up to (9((2/L)6). 

Returning to our numerical example, Eq. (4.32) with c ( / ~ = - 1 / 2 4  
gives 

p = 1.3404065 

which is indeed the correct result (4.33). This excellent agreement is also 
very clear from Fig. 4. 

Thus, our discrete model may predict the solution of the Laplace 
equation very accurately, even for quite small systems. This fact is impor- 
tant in numerical simulations because one can obtain satisfactory results 
without using very. large systems which require more computation 
resources. 

Furthermore, it may be very realistic to have a small separation 
between the sinks of particles. When modeling a microscopically 
inhomogeneous system where particles are trapped or absorbed at 
randomly distributed sites, the impurities may be separated by only a few 
lattice spacings. The density p should depend as little as possible on the 
physically irrelevant parameters of the model, such as the discrete aspect of 
the space. 

It is now interesting to return to the numerical simulations of our 
CA rule and measure the average density for a stationary situation corre- 
sponding to the one studied above. The experiment was conducted on the 

822/64/3-4-26 
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CAM-6 machine for the particular size of the system L =  292. For the 
implementation we considered, the random generator was not perfect and 
we could not set the pe very accurately. We first chose c~ ~ 0 and D ,  ~ 1/4 
and the experiment gave p = 1.3400 with a time average made over 11,657 
measurements. On the other hand, for c~//7~23.5 (and D,~0 .74) ,  the 
measured density was p =  1.255 with a statistics of 13,547 events. This 
discrepancy with the expected result of 1.7688 (see above) is easily 
explained because the actual boundary conditions on the automaton did 
not correspond exactly to the theoretical solution (4.32). Indeed, as in 
Section 4.1, our boundary conditions consisted of a source and a sink of 
particles. This has the effect of controlling the number of particles entering 
the system near the boundary (i.e., the Ni), but it does not specify the 
density on the sites next to the source and the sinks, where (4.32) is valid. 
Although these boundary conditions are more realistic than those we used 
in the theoretical solution, they are less tractable analytically. However, for 
large enough systems or small values of D , ,  both situations are equivalent. 

This section has shown the importance of choosing properly the p~. In 
Fig. 5, we sketch the possible values of the p~ and the resulting values of D 
and e/ft. 

4.3. The Time-Dependent System with 
Periodic Boundary Conditions 

The functions Mi [-given by (3.18)] can always be written as a discrete 
Fourier series 

Mi(r, t) = ~ Ai(k, t) exp( ik ' r )  (4.36) 
k~Vk 

where 
1 

Ai(k, t )=  A r ~  ,~v Mi(r, t ) e x p ( -  ik" r) (4.37) 
r 

Vr denotes the set of all lattice points and the wave numbers k ~ Vk are 
given by 

k = (kl, k 2 ) = 7  

with 

nj~{ ~jj2 '"" 0' 1'"" ~ - -  1} (4.39) 

where j = 1, 2 and ~ and ~ are the numbers of sites along the directions 
el and e 2 of the lattice (assumed to be even). 
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U 

~,=o.o5 Po 

Fig. 5. Admissible values of P0 and p and the curves D,(po, p)=D , (solid line) and 
(ct/fl)(po , p) = c~/fl (dashed line). 

Simple equations of motion for the amplitude Ai(k, t) can be 
obtained when considering a system with periodic boundary conditions 
(wraparound lattice). In this case, no site has the status of being the 
boundary of the system and our equations for Mi [-(3.8) and (3.9)] are 
valid for every r e Vr. Equations (3.8) and (3.9) lead to the following set of 
equations for the amplitudes Ai(k, t), uncoupled k: 

) ) "/ =8(k)(Allk, t) {Al(k,t 
\ A 4 ( k , t + z )  \A4(k , t )  + C \ A 4 ( k , t - z )  

(4.40) 
where 

B ( k ) = {  (P~ + P)(c~ k12 + c~ k22 ) ( P ~  P ) ( - c ~  k12 + e~ k22 )'] 
\ (po  + p ) ( - c o s k 1 2  +cosk22)  ( p o - p ) ( c o s k 1 2  +cosk22)  J 

(4.41) 



886 Chopard and Droz 

and 

('0 o)  t44 1 C = ( P 2  - -  P o )  1 - -  4 p  

It  is impor tan t  to notice that  this procedure  no longer works when 
boundar ies  are imposed  on the lattice because (3.8) and (3.9) are not  true 
everywhere and cannot  be summed  over  the entire lattice. 

The solution of the i teration equat ion (4.40) is 

Al (k  t ) )  
A4(k , t) = ~ ei%(klt~t(k) (4.43) 

l 

where coz and ~z are such that  

det (B(k)  - e - i % ~ C -  ei~ ~ 1) = 0 (4.44) 

and 

(B(k) -- e- i%~C-  ei~~ ~ 1) ~ t  = 0 (4.45) 

Equat ion  (4.44) is the dispersion relation of our  model. With 

# = e~% ~ (4.46) 

it reads 

(C11# ~ -#+bH) (c22# -~ -#+bz2# ) - b ~ 2 b 2 ~  =0 (4.47) 

where bkl and ck~ denote the elements of B and C. In general, we expect to 
find four solutions #~, associated with four vectors q~t, which is the number  
we need to specify AI and A 4 at times t = 0  and t =  1. Explicit solutions 
of (4.47) are difficult to find unless cll =c22 or b12=0 (621 = 0  is not  
interesting since it corresponds  to P2 = 1). 

The  diffusive behavior  of our  dynamics  causes all modes  k r 0 to 
vanish in the long-t ime limit. The long-lifetime modes are those for which 
# is close to 1 in modulus.  For  k small enough, # turns out  to be real and 
the contour  lines of the dispersion relation are easily obta ined by writing 

(4.47) as 

Cll  C22 -{- ].2 COS k 1 )~[c22(Po q- p) + c11(Po - P) 

cos k2): = - 2p~ - #2(Cli + c22 - #2) (4.48) 
#[C22(P o -I- p)  + Cll(po -- p)  -- 2po# 2] 

+ 4(pZ- -pZ)#2cosk l2  
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This part of the dispersion relation corresponds to the dispersion relations 
of the diffusion and telegraphist equations, which read 

and 

ix -= e ~~ = exp[ - D, (2k)  2 ] 

#=-ei~ - c2" [1-(1 4D2*22k2"]l/2]~ 
<~ ) JJ 

(4.49) 

we write 

respectively. These three relations are compared in Figs. 6, by showing, for 
various values of D , ,  their contour lines. It appears from these com- 
parisons that a very good agreement is achieved for small wave vectors. 
When D ,  increases, our discrete dynamics is closer to the telegraphist 
equation than to Fick's law. 

The anisotropy of our model clearly shows up in Figs. 6, for large 
enough wave vectors. It is due to the terms cos k12 and cos k22 in (4.47) 
and is an effect of fourth order in k. However, it is interesting to note that 
the isotropy can be much improved by properly choosing p, as illustrated 
in these plots. An isotropic dynamics is certainly an important constraint 
in a realistic model of diffusing particles. It is more important than an 
agreement with a particular diffusion equation (telegraphist or Fick's) 
which will never contain all the complexity of a real system. 

As k increases, # may have an imaginary part and we observe damped 
out waves. This phenomenon is also present in the telegraphist equation, 
but not in Fick's law. For instance, when po=p (b~2=0 and p~<l/3), 
Eq. (4.47) yields 

For 1/4 < p ~< 1/3 and 

e i<~ = p[cos  kl 2 + cos k22 ] _ {(1 - 4p) + p2[cos k12 + cos k2212} 1/2 (4.51) 

[cos k12 + cos k22] 2 < - -  
4p-1 

p2 (4.52) 

e T M  = #e i<*(k)k;" (4.53) 

where/1 is the modulus of e i~ and c , (k)  is the (dimensionless) propagation 
speed of mode  k. We obtain 

/~ = (4p - 1) 1/2 

and 

1 ( P [cos k12 c , (k )  = ~ Arcos \ (@_-1)1/2 + cos k 2 2 ] )  (4.55) 

(4.54) 

(4.50) 
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Contour lines of the diffusive part of the dispersion relation [#=exp(icoz)] for 
various values of D,  and p. The solid lines correspond to the CA model, the dashed ones to 
the telegraphist equation, and the dotted ones to Fick's law of diffusion+ For ,u = 0.99 the three 
dynamics are almost indistinguishable. Note that the scales are not the same in all figures. 
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(-re,0) (0,0) kl (re,0) 

p=0.3 D,=0.375 

Fig. 7. Three-dimensional plot of the propagation speed of the mode k. The left surface 
(solid lines) represents c,(k) for the CA model and is invariant under ~/2 rotations. The right 
part (dashed lines) corresponds to c,(k) given by the telegraphist equation and is invariant 
under any rotation. 

Likewise, from (4.50), the propagation speed c , (k)  and the amplitude p' 
predicted by the telegraphist equation are found to be 

2 F4D2(k2)2 11/2 c ,  
c, (k)  = 2D,k2  [_ ~-c, 1 (4.56) 

and 

# ' = e x p  _ c ,  (4.57) 

These two speeds c , (k)  and c , (k)  are compared in Fig. 7. Although they 
look qualitatively similar, they are quantitatively different. In particular, 
the anisotropy of the propagation speed is visible in the discrete model. 
However, these waves are not very significant for this value of D ,  since 
they are quickly damped out due to the small value of #. 

5. C O M P U T A T I O N A L  ASPECTS 

In this section we shall compare the performances, in terms of speed, 
of our cellular automata algorithm with another algorithm recently 
proposed in the literature. 

One of the computational advantage of cellular automata algorithms 
is the fact that they can be implemented on special-purpose computers. Our 
algorithm has been implemented on such a machine, the CAM-6, (12) which 
is a very cheap board ( ~ 15005) running in a PC. A system up to 128 x 128 
has been simulated at a rate of 32 updatings of the entire system per second 
(i.e., 2 x 10 -6 sec per site). For the improved version CAM-8, which shall 
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be completed soon (costing --~10,0005), systems much larger (typically 
1024 x 1024) can be simulated and the time to update one site is reduced 
to 3 x 10 .8 sec. Note that several CAM-6 or CAM-8 boards can be put 
together to consider larger systems without slowing down the simulation. 

A naive implementation of the algorithm on a Connection Machine 
leads to a speed of about 7x  10 -Tsec per site, for a system size of 
256 x 256. 

The same algorithm running on a computer with no parallel architec- 
ture is slower. For  example, on a VAX 8700, using multispin coding, the 
time to update one site is increased to 4 x 10-6 sec for a 256 x 256 lattice. 

P/itzold e taL (23) have proposed a different algorithm for diffusion 
which is completely vectorizable on a Cray-like computer. This algorithm 
is based on Kawasaki exchange process at infinite temperature and has no 
obvious way to adjust the diffusion constant. Vectorization is possible by 
dividing the system into several sublattices. The time to update one site on 
a CRAY X-MP/416 computer is 5 x 10 7 sec. 

Those figures show the efficiency of special-purpose computers, 
provided performance algorithms can be designed. 

6. C O N C L U S I O N S  

We have shown that a simple probabilistic CA algorithm was able to 
simulate very well the simultaneous random walk of many particles. The 
imposed exclusion principle as well as the correlated motion of the particles 
at a given site do not affect the expected diffusive behavior. 

Macroscopically, the model obeys the telegraphist's equation, due to 
the finite speed of propagation of the particles. This introduces corrections 
to Fick's law only for large values of the diffusion constant and for short 
time, and gives the model a sensible physical content. 

The parameters of the rule (the probabilities Pi) allow us to adjust the 
diffusion constant and are found to play an important role in the finite-size 
effects and the isotropy of the dynamics. 

Implementation of the algorithm on a special-purpose computer such 
as CAM-8 leads to the fastest simulations of a system of diffusing particles. 
The fact that dedicated machines are much more affordable than a super- 
computer is another reason to consider the CA approach to diffusion. 
Furthermore, by adding a reaction term in the CA rule, our model is 
appropriate to study many interesting and difficult reaction-diffusion 
problems. Such applications are now under investigation and have already 
given promising resutts. (24) 

One of the great merits of the proposed model, as compared to pre- 
vious cellular automata algorithms, is that a complete and exact theoretical 
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analysis of its properties can be performed. This fact is very interesting in 
two respects. 

First, from the point of view of numerical simulations, our results 
provide us with some prescriptions on how to choose the suitable time and 
length scales in a given situation. The role played by the finite-size effects 
can be controlled as explained in Section 4. Pertinent information about 
the stationary states and the time evolution can be obtained. 

Second, from the theoretical point of view, our model helps to develop 
a better understanding of many problems common in CA modeling of 
physical situations. In particular, it shows clearly how the multiscale aspect 
of the problem appears and the need to consider a different time scale for 
the propagative and dissipative regimes. Also, the effect of the lattice on the 
transport coefficients turns out to have a natural and simple interpretation. 
The fact that the associated Boltzmann equation is linear allows Us to 
obtain exact solutions without uncontrolled approximations. Several 
important questions, such as the role played by the discreteness of space 
and time, the domain of validity of the continuous limit, and the 
convergence of the multiscale expansion (19) often used to solve discrete 
Boltzmann equations, can be answered. This last question will be the 
subject of a forthcoming publication. (25) 
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